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Abstract—Beam management (BM) plays a crucial role in
maintaining reliable communication links in highly dynamic
scenarios. To enhance BM performance, the 3rd Generation Part-
nership Project (3GPP) is actively exploring the use of artificial
intelligence (AI) and machine learning (ML) for beam prediction
in the evolution toward sixth-generation (6G) communications.
The main goals of these 3GPP-based standard studies are to
minimize the overhead from reference signals (RSs) and to reduce
the number of beam sweepings at the user equipment (UE),
which arise due to frequent beam measurements caused by
UE movement and rotation. This paper delves into an AI/ML
algorithm design that supports spatial domain beam prediction
tailored for BM in 6G. This includes forecasting the optimal
beam (pairs) and anticipating beam changes. Simulations are
based on a data-driven strategy that uses RS receive power
(RSRP) measurements as input for fast beam pair prediction with
an advanced convolutions neural network (CNN) architecture.
Results indicate that the proposed AI/ML model outperforms
conventional BM techniques, reducing beam sweeping overhead
and thereby validating the AI/ML’s potential in BM. Additionally,
our proposed algorithm achieves up to 40.58% higher beam
prediction accuracy and improves the mean RSRP difference
of the predicted best beam pair by up to 2.89 dB.

Index Terms—Sixth-generation (6G), Machine Learning (ML),
millimeter-Wave (mmWave), Spatial Domain, Beam Management
(BM).

I. INTRODUCTION

THE exploration and subsequent implementation of mil-
limeter wave (mmWave) and terahertz (THz) frequencies

in communication frameworks present a promising frontier,
particularly because of the high data throughput they can
achieve [1]. This is attributed to the vast bandwidth these
frequencies have access to [2]. However, the potential of
such frequencies is also accompanied by significant chal-
lenges. One primary concern is the pronounced free-space
path loss inherent to these frequency bands. To counteract this
drawback, communication systems are increasingly turning
to beamforming methodologies, using large antenna arrays at
both transmitting and receiving points, which aid in enhancing
the signal’s strength and directionality [3], [4]. Central to this
strategy is the concept of beam management (BM), which
revolves around the meticulous process of determining the
optimal beam pair to establish and sustain a robust communi-
cation link, a process discussed in depth by [5], [6]. Yet, it is
imperative to note that the efficiency of BM is put to the test,
especially in highly dynamic wireless environments. In urban
areas with high mobility, the channel’s conditions can fluctuate
rapidly [7]. Such volatile conditions amplify the complexities
of ensuring a seamless BM [8].

Building on the complexities inherent in mmWave BM,
especially in dynamic environments, there emerges a clear
and pressing need for more adaptive and intuitive mechanisms
to ensure robust communication. Turning to Artificial Intel-
ligence (AI) and Machine Learning (ML), AI/ML-integrated
BM stands out as a promising avenue [9]. As we transition
toward sixth-generation (6G) communications, AI/ML-assisted
BM is proposed to offer both accuracy and adaptability in
beam prediction [10]. These AI/ML technological paradigms
provide transformative potential in reshaping how BM is
approached, constantly evolving as standard impacts in the
3rd Generation Partnership Project (3GPP), a forefront entity
in shaping communication standards [11]. Stepping away from
traditional methods like exhaustive beam switching and pilot-
based beamforming [12], which may falter in adaptability,
AI/ML strategies present real-time learning capabilities. They
not only assure the consistent choice of beam pairs but also
dynamically adapt to the fluid challenges inherent in mmWave
communication channels [13].

3GPP Release 18 has set up a study item to explore the po-
tential of AI/ML-based solutions for identified use cases [14]
Within this progressive release, BM has emerged as a prime
example of integrating AI/ML into the New Radio (NR) Air-
interface [15]. Within the scope of AI/ML-based BM, spatial-
domain beam prediction has been identified as one of the
representative sub-use cases. The essence of this approach
is profound yet elegant: by utilizing an AI/ML model, the
User Equipment (UE) needs to measure only a limited set
of transmit-receive (TX-RX) beam pairs. Thereafter, either
the UE or the next generation Base Station (gNodeB) can
predict the optimal beam pair, a feat achieved without the
overhead of requiring exhaustive measurements. AI/ML-based
BM algorithms aim to minimize beam measurement overhead
while simultaneously amplifying the accuracy of beam predic-
tions, all under the same operational constraints. Leveraging
vast amounts of data from communication networks, AI/ML
models can learn the beam behavior patterns to the ever-
changing environmental dynamics in higher frequencies.

To this end, several works have also been developed to
study the AI/ML-based BM performance in mmWave future
networks [16]–[20]. For instance, a deep learning-assisted BM
prediction method was proposed in [16] to assess a subset
of downlink beam pairs to reduce overhead compared with
an exhaustive search while determining the optimal pair by
predicting the reference signal receive power (RSRP) across all
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beams. Nguyen et al. introduced a novel learning framework
for user-specific beam selection and transmit power optimiza-
tion to minimize costs in unknown channels, tackling missing
data issues using the long-short term memory for temporal in-
put processing [17]. Drawing on spatial channel characteristics
from the sub-6 GHz band to mitigate mmWave beam training
overhead, Alrabeiah et al. crafted a deep learning model and
empirically assessed its capability in beam/blockage predic-
tion [18]. Similarly, Sim et al. introduced a deep learning-
based beam selection compatible with the 5G NR standard,
utilizing sub-6 GHz channel information and employing a deep
neural network (DNN) to estimate the power delay profile of
a sub-6 GHz channel as its input [19]. Echigo et al. presented
a deep learning-driven, low-overhead analog beam selection
strategy using super-resolution technology, where DNNs esti-
mate beam quality from partial measurements, addressing the
challenges of swift beam alignment for rapid wireless link
establishment in codebook-based beamforming scenarios [20].
However, none of the aforementioned research works consid-
ered a RSRP-enabled AI/ML-based mmWave spatial domain
beam pair prediction using convolutional neural networks
(CNNs).

In this paper, our focus is on AI/ML modeling and its
performance evaluation for spatial-domain beam prediction in
6G networks. The key contributions are as follows:

• We formulate the BM process as a classification problem
by training a model to learn to identify the best BM
pair on each time step. This approach incorporates BM
measurements from a small subset of all available beam
pairs based on the mmWave 3GPP-compliant downlink
signaling and measurement framework.

• We explore AI/ML-based spatial domain beam pair pre-
diction technique(s) using an advanced CNN architecture
for broader applicability and computational efficiency for
BM in future networks. The proposed architecture is com-
patible with various beam measurement configurations
while considering how to reduce the training and stor-
age requirements typically associated with conventional
CNNs.

• Our numerical analyses validate the effectiveness of our
proposed CNN model, showing that beam selection ac-
curacy and L1-RSRP difference performance outperform
traditional approaches, such as sparse beam sweeping, in
determining the best-serving beam pair.

The remainder of this paper is organized as follows. Sec-
tion II discusses the system model and performance metric.
The AI/ML-based BM algorithm is described in Section III.
Section IV presents the simulation setup and provides a
comprehensive explanation of the proposed deep learning-
based BM strategy and results. Finally, Section V concludes
the paper and summarizes the key findings.

II. SYSTEM MODEL AND PERFORMANCE METRIC

We study an mmWave multi-cell network with a gNodeB
and several UEs in each cell. There are K users randomly
positioned in each tri-sector cell, where the set of users is
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Fig. 1. Spatial domain BM in a multi-cell multi-user mmWave network.

denoted by K = {1, . . . ,K}. As illustrated in Fig. 1, both
the gNodeB and the UEs possess multiple beams, where the
gNodeB of the neighboring cell interferes with the intended
user beam. For enhanced coverage and data transfer rates, the
optimal beam pair should be chosen for each UE and gNodeB
during data transmission. In the conventional downlink BM
method, the correct beam pairing from the NTX beams at the
gNodeB end and NRX beams at the UE end is determined
based on reference signal measurements. The gNodeB sends
out each RS in a distinct beam direction, allowing the beam’s
quality to be inferred from the received power of the corre-
sponding RS on the UE’s end. The UE can report the quality of
the assessed beams back to the gNodeB. From the beams that
are reported, the gNodeB will then choose the most suitable
one. The reported data comprises the RS identification, and
its associated RS received power (RSRP) or the signal-to-
interference-plus-noise-ratio (SINR) of the indicated RS.

The mmWave channel response for the k-th UE is de-
rived using a 3GPP-compliant 3D geometry-based stochastic
channel model generator called the QUAsi Deterministic Ra-
dIo channel GenerAtor (QuaDRiGa) [21]. Accordingly, the
mmWave channel can be represented as follows:
Hk =

∑
l∈L

ξl,kar,k,l(θ, ϕ)a
H
t,k,l(θ, ϕ)e

−j2πτl,kf ,∀k ∈ K, (1)

where L = {1, . . . , L} is the set of channel’s multi-path
components with L as its set cardinally. Besides, ξl,k, τl,k, and
f represent the complex gain for sub-path l of UE k, delay
values for sub-path l of UE k, and the subcarrier frequency,
respectively. Furthermore, at,k and br,k denote the transmitter
and receiver array responses based on sub-path l’s of the k-
th UE’s elevation and azimuth angles of arrival and departure
(θ, ϕ). The array responses for both gNodeB and UE, sized as
NTX = Nt,xNt,yNt,z (Nt,x, Nt,y , and Nt,z are x, y, and z of
NTX) and NRX = Nr,xNr,yNr,z (Nr,x, Nr,y , and Nr,z are x,
y, and z of NRX), respectively, are as follows:

ai,k,l(θ, ϕ) = bi,k,l(θ, ϕ)⊙ gi,k,l(θ, ϕ),

∀i ∈ {t, r},∀k ∈ K,∀l ∈ L, (2)
where ⊙ is the Hadamard product. Moreover, gt,k,l ∈ CNTX×1

and gr,k,l ∈ CNRX×1 are the linear gain for TX and RX
antennas, respectively. Finally, bi,k,l is defined as:

bi,k,l(θ, ϕ) =
bzi,k,l(θ)⊗ byi,k,l(θ, ϕ)⊗ bxi,k,l(θ, ϕ)√

Ni,xNi,yNi,z

,

∀i ∈ {t, r},∀k ∈ K,∀l ∈ L, (3)



where ⊗ denotes the Kronecker product, and the components
bxi,k,l ∈ CNx×1, byi,k,lCNy×1, and bzi,k,lCNz×1 are given as:

bxi,k,l(θ, ϕ)=[1, ejπsin θi,k,lcosϕi,k,l,. . .,ejπ(Nx−1)sin θi,k,lcosϕi,k,l]T

(4)

byi,k,l(θ, ϕ)=[1, ejπsin θi,k,lsinϕi,k,l,. . .,ejπ(Ny−1)sin θi,k,lsinϕi,k,l]T

(5)

bzi,k,l =[1, ejπ cos θi,k,l , . . . , ejπ(Nz−1) cos θi,k,l ]T ,

∀i ∈ {t, r},∀k ∈ K,∀l ∈ L. (6)
The 3GPP BM framework consists of layer 1 (L1) and
layer 2 (L2) procedures utilizing beam actions like sweeping,
measurement, determination, and reporting to align gNodeB’s
and UE’s beams [22]. These procedures, unofficially termed
P1, P2, and P3 in technical discussions [22], encompass
gNodeB transmit beam selection using broad beams (P1),
refining that selection with narrower beams (P2) and post-
gNodeB selection, allowing the UE to find the optimal receive
beam (P3) for the gNodeB transmit beam identified in P2.
However, the standard does not necessitate these procedures’
implementation. The assumed beamwidth relationship between
P1 and P2 beams is not standard-specified but is industry-
accepted. Their application should be scenario-tailored to
minimize latency and signaling overhead. In both P1 and P3
instances, the signal received by k-th UE can be expressed as:

yk = ρH
k Hkωsk + ρH

k n,∀k ∈ K, (7)
where Hk ∈ CNr×Nt represents the mmWave channel ma-
trix as expressed in (1). The gNodeB’s beamforming vector,
ω ∈ CNTX×1, encompasses the analog phase shifts for a beam,
maintaining a constant modulus of 1√

NTX
, which spatially

processes the transmitted signal sk. At the k-th UE, this signal
is captured through a beam dictated by the analog phase shifts
in the beamforming vector ρk ∈ CNRX×1 , sustaining a constant
modulus of 1√

NRX
. Lastly, n ∈ CNRX×1 ∼ CN (0, σ2INRX) is

the receiver’s noise, interpreted as a complex additive white
Gaussian noise vector with a variance σ2.

To ensure an optimal beam pair that adjusts to changing
channel conditions, regular beam measurements and reporting
are essential. Identifying the best beam pair involves thor-
oughly measuring |Set A| = NTX ×NRX beam pair combina-
tions. However, due to the typically large number of transmit
beams at the gNodeB in mmWave systems, it is impractical to
measure the quality of every beam pair exhaustively because of
the extensive measurement overhead. Instead, a subset of these
beams, referred to as Set B, where Set B ⊆ Set A, is chosen
for beam measurement, that is m = |Set B| beams from all
possible NTX ×NRX transmit-receive beams. The right beam
pair is then selected from the p×q, ∀p ≤ NTX, q ≤ NRX beam
pair combinations. Still, there is a risk that the best beam
pair might be overlooked since it might not be included in
the measured set. In our study, we employ an AI/ML-driven
approach to address the challenge of selecting the best beam
pair, given the known quality of some beam pairs. The problem
can be expressed as computing:

argmax pSet B

(
[r1,1, ..., rNTX,NRX ]

T
)
, (8)

where ru,v, 1 ≤ u ≤ NTX, 1 ≤ v ≤ NRX stand for the RSRP
associated with the beam pair comprised of the u-th Tx and the
v-th Rx beam. The argmax returns the beam pair index with
the highest RSRP within Set A. The AI/ML model, defined by
the parameters pSet B, aims to predict the RSRP for all Set A
beam pairs, using the observed RSRP of the Set B pairs as a
reference. Instead of predicting the RSRPs for all Set A beam
pairs, which requires more effort in collecting the training data,
we treat this as a classification problem, which predicts the
position of the optimal beam pair in Set A. The AI/ML model
aims to predict the probability of being the optimal beam for
each Set A beam pair. During the model training, the optimizer
tries to minimizes the cross-entropy loss, H(f , g), which is
the distance between what the model believes the output labels
should be, f , and what the actual labels are, g, according to:

H(f , g) = − 1

V

U∑
u=1

V∑
v=1

fu,v log(zθ(gv, u)), (9)

where V is the number of training examples, U is the number
of classes, gv is the input for training example v, fu,v
represents the target label for training example v for class
u, and finally zθ is the model with neural network weights θ.

III. AI/ML-DRIVEN BM DESIGN AND PROPOSED SOLUTION

In this section, we delve into the AI/ML-centric BM pro-
cess, followed by an introduction to the proposed AI/ML-
driven scheme. Our approach hinges on the CNN to execute
spatial domain beam predictions. We contemplate various
beam measurement pattern configurations, that is, distinct
Set B values, to anticipate the quality across all beam pairs.
Initially, models rooted in CNN are trained for each distinct
configuration and are trained as a ”global” model combining
data from all UEs in the dataset. The proposed CNN architec-
ture is pictured in Fig. 2 and consists of the following:

• Input Layer contains the |Set A| normalized RSRP values
converted into a 3D grid with shape 16x16x1 with one
value per BM pair. For Set B elements, the measured
RSRP value is used for training, whereas for all other
elements, the lowest observed RSRP value is used.

• A sequence of four convolutional layers performs feature
extraction with increasing channel depth up to 4x4x512.
These layers use the same activation function: rectified
linear unit function.

• A sequence of fully connected Layers of decreasing
size from 8192 to 256 to compute the classification. A
dropout layer precedes each layer to improve the model’s
generalization capability.

• Output Layer: Uses the softmax activation function to
predict the top beam pair by converting the last computed
256 vectors into probabilities associated with each entry
in Set A.

To train this classifier, we use the Categorical Cross-Entropy
loss function, which is well-suited for multi-class classification
problems [23]. The Adam optimizer is used for gradient-
based optimization of the network’s weights, combining the
advantages of both AdaGrad and RMSProp methods [24].
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Fig. 2. Our proposed CNN architecture for AI/ML-based mmWave BM.

This optimizer is known for its computational efficiency and
capability to handle large datasets effectively. For the evalu-
ation metrics, we focus on Accuracy — more precisely, the
Top-K1 Accuracy. The Accuracy metric measures the pro-
portion of correctly classified instances to the total instances
in the dataset, providing a straightforward assessment of the
model’s performance. Meanwhile, Top-K Accuracy considers
the model’s prediction to be correct if the true label is among
the top K predicted classes. This latter metric is particularly
useful when we are interested in identifying not just the
most likely beam pair but also the next-best alternatives. By
employing these settings, we aim to achieve a robust and
accurate beam-pair prediction model that can adapt to various
network conditions.

IV. SIMULATION RESULTS

We introduce the performance evaluation derived from the
discussions in Sections II and III for AI/ML-based beam
prediction in the spatial domain. We consider 19 cells, with
each cell comprising 3 sectors. The distribution of UEs is such
that 80% are indoors. We employ the urban-macro channel
model, as defined in 3GPP [26], for generating the dataset.
The gNodeB is equipped with 32 TX antennas, while the
UEs have 8 RX antennas. The transmit power is set to 20
dBm for a bandwidth of 40 MHz. The arrangement for the
TX antennas is represented by the sequence [4 8 2 1 1]
with a horizontal and vertical spacing of 0.5λ. On the UE
side, the antenna configuration follows [1 4 2 1 1] pattern
with the same uniform horizontal and vertical spacing. The
working frequency is anchored at 30 GHz within the mmWave
spectrum, incorporating a sub-carrier spacing of 120 kHz. We
also assume that L1-RSRP for all TX-RX beam pairs are
perfectly available to generate the training data. For every
beam measurement setup, we produce a total of 500000 data

1We note Top-1 is defined as the percentage of “the Top-1 genie-aided
beam is Top-1 predicted beam,” and Top-K/1 is the percentage of “the Top-1
genie-aided beam is one of the Top-K predicted beams,” where K > 1 [25].
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Fig. 3. Performance comparison of AI/ML-based model. Solids lines are our
proposed CNN architecture with 9.724 million trainable parameters, and the
dashed lines are based on the traditional sparse beam sweeping approach.

samples. We allocate 90% of these samples for training the
model, reserving the remaining 10% for testing. We now aim
to assess the effectiveness of our proposed CNN model by:

• Examination of performance based on varying numbers
of beam pairs inputted into the AI/ML model.

• Analysis of performance differences using various beam
patterns: fixed, random, and pre-configured.

• Evaluating Top-K/1 beam prediction accuracy, assessing
the L1-RSRP difference of the Top-K/1 predicted beam
pair(s), and comparing this to the L1-RSRP difference
from the sparse beam sweeping (traditional) method.

We begin by contrasting the performance of the AI/ML
model over diverse Set B sizes and patterns. Table I contains
the performance evaluation results when using fixed beam
pattern sampling with various numbers of Set B beam pairs as
input to the AI/ML model. Subsequently, Table II is for pre-
configured beam patterns, while Table III shows results when
using a random beam patterns sampling approach. It is evident
that as Set B lengths grow, the accuracy improves. Conversely,
the average L1-RSRP difference for top-K/1 diminishes with
increasing Set B lengths. This trend remains consistent across
all three sampling approaches. Fig. 3 visualizes this effect
for Top-1 accuracy and L1-RSRP difference of the Top-1
predicted beam pair in our proposed CNN architecture based
on Tables I-III. As seen in Fig. 3, the fixed beam pattern ap-
proach surpasses both the pre-configured and random methods,
delivering higher accuracy and a reduced L1-RSRP difference
using the proposed AI/ML model. Yet, the margin of improve-
ment between the fixed and pre-configured patterns is small.
Besides, although the performance of the traditional beam
sweeping approach, i.e., sparse beam sweeping (in which the
beam pair in Set B with the highest L1-RSRP is chosen as the
best beam pair) correlates with the Set B length, there seems
to be no discernible connection with various Set B sampling
patterns. Furthermore, Fig. 3 shows our proposed data-driven
strategy achieves up to 40.58% higher beam prediction Top-
1 accuracy and decreases the average L1-RSRP difference of
the Top-1 predicted beam pair by 2.89 dB compared to the
traditional sparse beam sweeping method.

To understand the distribution of L1-RSRP differences
for all test samples, we plot the corresponding cumulative



TABLE I
FIXED BEAM PATTERN SAMPLING (TOTAL BEAM PAIRS = 256)

Set B Length Accuracy (%) Avg. L1-RSRP difference of Top-K/1 predicted beam
Top-1 Top-2/1 Top-4/1 Top-6/1 Top-8/1 Top-1 Top-2/1 Top-4/1 Top-6/1 Top-8/1

8 24.45 38.22 54.52 64.31 71.25 5.72 3.86 2.26 1.54 1.13
16 39.20 56.56 72.61 80.65 85.62 3.04 1.81 0.90 0.56 0.38
24 45.29 63.37 78.83 85.87 89.79 2.17 1.22 0.56 0.33 0.23
32 51.89 70.0 83.63 89.24 92.41 1.65 0.87 0.38 0.23 0.15
40 57.31 75.37 87.82 92.28 94.68 1.23 0.61 0.24 0.14 0.09
48 58.10 76.16 88.10 92.58 94.93 1.14 0.56 0.22 0.13 0.08
56 59.85 77.73 89.22 93.39 95.49 1.02 0.48 0.19 0.11 0.07
64 61.44 79.29 90.32 94.28 96.22 0.92 0.42 0.16 0.09 0.06

TABLE II
PRE-CONFIGURED PATTERN SAMPLING (TOTAL BEAM PAIRS = 256)

Set B Length Accuracy (%) Avg. L1-RSRP difference of Top-K/1 predicted beam
Top-1 Top-2/1 Top-4/1 Top-6/1 Top-8/1 Top-1 Top-2/1 Top-4/1 Top-6/1 Top-8/1

8 24.35 38.41 54.53 64.37 71.12 5.70 3.83 2.25 1.55 1.14
16 36.95 54.3 70.62 78.69 83.7 3.19 1.93 0.99 0.62 0.44
24 43.18 61.92 77.41 84.46 88.65 2.26 1.27 0.60 0.37 0.25
32 50.25 68.63 82.56 88.47 91.76 1.68 0.88 0.39 0.23 0.16
40 54.72 73.53 86.18 91.20 93.95 1.29 0.65 0.28 0.16 0.10
48 56.25 74.88 87.21 92.08 94.62 1.20 0.58 0.24 0.13 0.09
56 57.92 76.36 88.53 93.09 95.26 1.08 0.51 0.20 0.11 0.07
64 59.26 77.93 89.47 93.82 95.93 0.98 0.45 0.18 0.09 0.06

TABLE III
RANDOM BEAM PATTERN SAMPLING (TOTAL BEAM PAIRS = 256)

Set B Length Accuracy (%) Avg. L1-RSRP difference of Top-K/1 predicted beam
Top-1 Top-2/1 Top-4/1 Top-6/1 Top-8/1 Top-1 Top-2/1 Top-4/1 Top-6/1 Top-8/1

8 11.83 21.54 34.96 44.85 52.30 8.72 6.58 4.45 3.35 2.69
16 19.67 33.86 50.29 60.21 67.34 5.89 4.10 2.49 1.76 1.32
24 25.83 41.68 58.87 68.43 74.77 4.52 3.03 1.73 1.18 0.87
32 30.21 48.09 65.25 73.83 79.37 3.70 2.35 1.27 0.85 0.61
40 33.82 52.22 69.04 77.49 82.54 3.16 1.96 1.04 0.67 0.48
48 36.28 55.59 71.92 79.78 84.44 2.81 1.67 0.86 0.56 0.40
56 39.80 58.91 74.89 82.35 86.63 2.44 1.43 0.70 0.44 0.31
64 43.46 62.91 78.00 84.87 88.89 2.06 1.16 0.55 0.34 0.23
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Fig. 4. CDF of L1-RSRP difference for fixed input beam pattern.

distribution function (CDF) as a function of average L1-RSRP
difference as depicted in Fig. 4 (for fixed input beam pattern),
Fig. 5 (for pre-configured- input beam pattern), and Fig. 6
(for random input beam pattern). From the CDF figures, we
can see that given an equal quantity of training data, the
utilization of fixed beam patterns as input yields superior
performance in comparison to either random or pre-configured
beam patterns. This insight corroborates our earlier findings
from Fig. 3. Such a trend might arise because leveraging an
increased number of different beam patterns as input to an
AI/ML model necessitates more training data. This ensures the
model can proficiently discern the mapping function between
all the input beam patterns and the corresponding optimal
beam pairs (outputs) in Set A.

After evaluating the Top-K/1 prediction accuracy and aver-
age L1-RSRP difference of Top-1 (and Top-K) predicted beam
pair(s) across various Set B lengths, a natural next step is to
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Fig. 5. CDF of L1-RSRP difference for pre-configured input beam pattern.
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Fig. 6. CDF of L1-RSRP difference for random input beam pattern.

determine proper Set B length and K value, which may help
the gNB to decide the number of L1-RSRP measurements it
may request the UE to measure in the next round. Hence, we
analyzed the L1-RSRP difference between the ideal L1-RSRP
of the Top-1 genie-aided beam and that of the Top-K genie-
aided beams in the dataset. This combined metric provides a
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Fig. 7. Average L1-RSRP difference between the ideal L1-RSRP of the Top-
1 genie-aided beam and the ideal L1-RSRP of the Top-K genie-aided beams
in the dataset

clearer picture of performance. As an illustration, in Fig. 7,
the true L1-RSRP difference between the Top-1 beam and
the Top-3 beam in our dataset is 2.9 dB, and the difference
between the Top-1 beam and the Top-4 beam is 3.9 dB. Hence,
the value for the average L1-RSRP difference of the Top-1
predicted beam pair prediction performance below 3.9 dB may
be considered decent. Jointly considering this information and
the results depicted in (Table I) when using a fixed Set B
sampling pattern, we may select |Set B| = 32 and choose 8
as the value for K as it indicates > 92% probability the true
optimal beam pair is within the Top-8 predicted beam pairs
and the average L1-RSRP difference of the Top-1 predicted
beam pair is 1.65 dB. If gNB chooses to perform another
round of beam sweeping for the Top-8 predicted beam pairs,
then it would further reduce the average L1-RSRP difference
of the Top-1 predicted beam pair to 0.15 dB.

V. CONCLUSION AND FUTURE WORK

In this paper, we explored AI/ML-based spatial beam pre-
diction, focusing on both performance and the intricacies of
AI/ML model architecture. Our analysis revealed that fixed
input beam patterns consistently outperformed both random
and pre-configured patterns when subjected to equivalent train-
ing samples and beam measurements. Interestingly, AI/ML-
driven spatial beam prediction markedly surpassed the sparse
beam sweeping approach in terms of accuracy and average L1-
RSRP difference of Top-1 predicted beam pair. Yet, one should
tread carefully when using the average L1-RSRP difference
of the Top-1 (or Top-K) predicted beam as an indicator of
performance. Without juxtaposing it with the average L1-
RSRP deviation between the ideal metrics of Top-1 and Top-
K genie-aided beams from the testing dataset, the metric
might offer a skewed perspective. In our future work, we
envisage a consolidated model suitable for diverse Set B
values, which bolsters the model’s adaptability. Furthermore, a
transfer learning-based approach could be studied to enhance
model generalization capability and minimize the training
overhead and storage requirements associated with developing
multiple models.
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