
Location-based Real-time Utilization of Intelligent Reflective Surfaces for
mmWave Communication and Sensing in Full-Immersive Multiuser VR

Filip Lemic1, Jalal Jalali2, Gerard Calvo Bartra1, Alejandro Amat1,
Jakob Struye2, Jeroen Famaey2, Xavier Costa Perez134

1i2Cat Foundation, Spain
2University of Antwerp - imec, Belgiun
3NEC Labs Europe GmbH, Germany
4ICREA, Spain



Contents

1 Introduction 3
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background, State-of-the-Art, and Challenges 5
2.1 Communication Challenges in VR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Intelligent Reflective Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Real-Time Sensing for Enhanced Experiences . . . . . . . . . . . . . . . . . . . . . . . 7

3 Overcoming Communication and Sensing Challenges 9
3.1 Considered Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Location-based IRS Resource Allocation for Communication and Active Sensing . . . 10

3.2.1 AP Transmit Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 IRS Optimal Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 Passive Beamforming and Radiation Pattern Optimization at the IRS . . . . . 13

3.3 Location-based IRS Resource Allocation for Advanced Sensing . . . . . . . . . . . . . 13
3.3.1 AP Transmit Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 IRS Optimal Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Passive Beamforming and Radiation Pattern Optimization at the IRS . . . . . 17

3.4 Computational Complexity and Convergence Analysis . . . . . . . . . . . . . . . . . . 18

4 Context-Aware IRS Utilization Performance 20
4.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Communication and Active Sensing Coverage, and Active Sensing Accuracy . . 22
4.2.2 Advanced Sensing Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Conclusions, Future Directions, and Implications 27

1



Abstract

The rapid progression of high-speed communication and computing technologies is ushering
in an era where various user platforms coexist, facilitating deeper interactions in fully immersive
virtual worlds. Advancements in technologies like Virtual Reality (VR) and high-frequency wireless
communication networks, particularly in millimeter Wave (mmWave) bands, are paving the way
for next-generation visualization platforms. These systems will empower users to navigate virtual
environments seamlessly, receiving high-quality, real-time content via mmWave communication
networks.

In this landscape, Joint Communication and Sensing (JCAS) emerges as a concept within 6G
research on wireless communications. It leverages existing wireless communication infrastructures,
such as mobile networks and WiFi, for both data transmission and sensing purposes. By utiliz-
ing wireless signals as illuminators and analyzing their reflections from users and objects, JCAS
enhances situational awareness and enables functionalities like object detection and position esti-
mation.

To address coverage challenges in mmWave networks while ensuring energy efficiency, Intelli-
gent Reflective Surfaces (IRSs) are proposed as a potential solution. These surfaces, also known
as Reconfigurable Intelligent Surfaces (RISs) or Software-Defined Metasurfaces (SDMs), consist
of passive elements capable of dynamically adjusting electromagnetic wave phases. Strategically
deploying IRS elements in wireless environments enhances signal strength, reduces path loss, and
optimizes overall communication performance. However, the comprehensive evaluation of IRS de-
ployment remains relatively unexplored. Given the impracticality of field experiments, computer
simulations offer a viable means to assess IRS performance. In our study, we introduce a novel
end-to-end simulation framework, based on the ns-3 simulator, aimed at optimizing IRS deploy-
ment for maximizing throughput and Signal-to-Noise Ratio (SNR) for each user location in a VR
context. By simulating scenarios with and without IRS we demonstrate the effectiveness of IRS
in supporting wireless communications for the next generation of VR platforms with multiple user
coexistence.
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1 Introduction
Virtual Reality (VR) is anticipated to transform our digital interactions in various domains, such
as healthcare, tourism, education, entertainment, and occupational safety [29]. The advancement
of VR relies on enhancing the quality of video content presented to VR users [9] and enabling
collaborative multi-user experiences, where users can interact and cooperate within the virtual
realm [4]. VR systems are poised to accommodate multiple fully-immersed users who can freely
navigate their Virtual Experiences (VEs) in an indoor environment.

Advanced Machine Learning (ML)-enabled wireless communication networks will be essential,
primarily operating in the millimeter Wave (mmWave) frequency band, spanning from 30 to 300
GHz [22]. These networks must offer highly directional transmission and reception capabilities to
ensure seamless real-time delivery of high-quality video content to mobile VR users [22]. These
directional mmWave beams are also expected to continuously track users’ movements to maintain
Line-of-Sight (LoS) connectivity, thus optimizing video quality. Simultaneously, the concept of
ML-based redirected walking is being explored to prevent collisions among co-located users and
between users and the boundaries of confined VR environments [4]. This approach allows VR users
to move freely within the virtual realms while discreetly guiding them within the physical setups
to avoid collisions, enhancing the overall immersion in the VEs.

The interactive multi-user VE envisions truthfully reproducing the actions of one user in the
VEs of the other, potentially collocated users. Such interaction should be reproduced within the
motion-to-photon latency of less than 20 ms to avoid causing nausea to the users [39]. Such motion
capturing is traditionally performed using cameras strategically positioned in the environment [27].
However, such approaches by-design do not guarantee privacy preservation and induce significant
delays due to cross-layer information collection and image processing overheads. More recently,
high-frequency JCAS approaches have gained traction, in which the same communication wavefront
is envisioned to be utilized for both tracking of the users and high throughput communication with
them [47]. At the same time, passive sensing in the form of mmWave radar is envisaged to be
employed for more advanced sensing tasks such as motion recognition or 3-Dimensional (3D) pose
estimation [49].

In full-immersive VR applications, maintaining stable throughput is of prime importance for
maintaining the users’ Quality of Service (QoS) throughout their VEs. At the same time, active
JCAS sensing tasks require the maximization of the Signal-to-Noise Ratio (SNR) of the communica-
tion wavefront for accuracy maximization [47]. These challenging requirements cannot be achieved
with existing mmWave hardware such as IEEE 802.11ad/ay Access Points (APs), primarily due to
the low number of antenna elements in the practical realization of mmWave transceivers, causing
unequal coverage in the deployment environment, as will be demonstrated in the paper. An addi-
tional challenge comes from the fact that LoS communication with the users might be interrupted
due to the presence of multiple users in the deployment environment, causing significant throughput
and SNR degradation.

To enable cost-effective indoor VEs, the deployment of Intelligent Reflective Surfaces (IRSs) on
the walls as a function of users’ trajectory is a potential solution [9]. An IRS consists of large arrays
of passive reflecting elements on a reconfigurable planar surface. These elements can independently
modify the phase of an incoming signal before reflecting it towards its intended receiver. The IRS
can be a boon for users experiencing significant path loss or blockage on the direct link, especially
when primarily operating in the millimeter Wave (mmWave) frequency band, as the IRS creates
additional propagation pathways | namely, reflected channels [44]. Moreover, the IRS offers added
degrees of freedom through the phase shifts of the reflective elements, which can be harnessed to
minimize interference [46, 15]. It is also worth noting that IRSs are envisioned to be manufactured
as passive, cheap, and flexible entities adaptable for indoor VR streaming setups, as they could be
used as “soft” environmental boundaries [19].

1.1 Contributions
In this Chapter, we consider an IRS-enabled multiuser mmWave VR environment, where the IRS
is deployed on one of the walls, and a multi-antenna AP transmits data to a set of single-antenna
Head Mounted Devices (HMDs) via the IRS. Specifically, we maximize the aggregate data rate
of all HMDs by optimizing the location of the IRS, beamforming, phase shifts, and radiation pat-
terns as a function of VR users’ trajectory (modeled using redirected walking) in a confined indoor
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environment. For the considered full-immersive VR scenario, we study a novel IRS location op-
timization, where a multi-antenna AP transmits information symbols to a set of single-antenna
HMDs. In particular, a resource allocation algorithm is designed to maximize the system’s sum
data-rate subject to peak transmit power feasibility and QoS constraints. The formulated problem
is non-convex, thus we employ Alternative Optimization (AO) algorithm, segmenting the main op-
timization problem into four distinct sub-problems, in which each sub-problem is optimally solved.
For the first sub-problem, i.e., the active beamforming at the AP, the Maximum-Ratio Transmis-
sion (MRT) is proved to be the optimal AP beamformer. In the second sub-problem, a closed-form
optimal solution is obtained for the IRS phase shifts design using quadratic transformation. A
global optimization of the IRS’s placement is carried out in the third sub-problem based on a
first-order derivative of the objective function. Finally, the optimal radiation pattern is determined
in a closed-form format based on the monotonicity of the transformed objective function. The
simulation results indicate that IRS with passive beamforming and location-based IRS placement,
combined with an optimal beamforming at the AP, can achieve improved data-rates compared to
a number of baseline schemes.

1.2 Structure
The structure of this paper is as follows. Section 2 provides an overview of related works and efforts.
In Section 3, we describe the adopted system model and present a mathematical characterization of
the channel for IRS and its optimal location. Section 4 describes our simulation methodology and
outlines how well our approach performs in simulation. Finally, Section 5 concludes the Chapter.
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2 Background, State-of-the-Art, and Challenges
2.1 Communication Challenges in VR
Forthcoming VR systems are envisioned to host multiple users simultaneously, engaging them in
interactive VEs in which one user’s actions influence the VE of other users, who may be co-located or
remote. An additional goal is to sustain seamless immersion in VEs while ensuring uninhibited user
movement within a tracking area, devoid of collisions with obstructions, environmental confines, or
fellow users [42].

The prospective ability to facilitate the engagement of numerous users within interactive VEs
will rely on advanced high-frequency wireless networks primarily operating in the mmWave spec-
trum, spanning from 30 to 300 GHz [11]. Given the high path loss when using these frequencies,
it is paramount that APs and HMDs focus their energy towards each other, transmitting and re-
ceiving highly directionally, through a process called beamforming [31, 45]. This way, high-quality
VR content can be delivered consistently and in real-time over high-gain links. In the VR sce-
nario, directional mmWave beams should dynamically track users’ movements during transmission,
preserving LoS connections [39]. Additionally, Redirected Walking (RDW) will be harnessed to
avert physical clashes between users and VR setup boundaries or collocated users, allowing them
to explore VE freely while subtly adjusting their paths to prevent collisions, thereby enhancing the
sense of immersion [30].

Figure 1: Full-immersive multiuser virtual reality with redirected walking [22]

Accurate short-term prediction of users’ movements, both laterally and orientationally, are
needed to ensure a convincing experience on several fronts. This enables not only accurate gener-
ation of content and proactive RDW [22], but also successful beamforming at both AP and HMD,
as motion may be too sudden to allow for reactive beamforming [50]. To cater to this requirement,
adaptable coverage proves invaluable for receiver-side beamforming on an HMD, as the slightest
misalignment in beam orientation can notably impact the SNR [1]. Thus, a flexible beam stretching
in the direction of HMD rotation can offer consistently high gain, essential for uninterrupted content
delivery [39]. This strategy guarantees that user motion is promptly portrayed on-screen. Ideally
this should happen within the 20 ms motion-to-photon latency bound, which is the maximal delay
between a user’s movement and the updated visual response they see on the screen that does not
cause discomfort [11]. The above requirements highlight the necessity of maintaining stable com-
munication coverage across an entire deployment environment. This is explored in details in this
work, and addressed through the location-based utilization of IRS. A high-level system summary
based on the above text is depicted in Figure 1.

A common method to enhance immersion in VEs involves directly mirroring users’ physical
movements within the VEs [12]. However, this approach typically confines users to limited tracking
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spaces, reducing overall immersion. To tackle this limitation, researchers have proposed diverse
virtual locomotion techniques to facilitate movement across expansive VEs, even within confined
tracking areas.

Leading-edge techniques leverage gestures resembling walking (e.g., walking-in-place), which
have been demonstrated to create a convincing sensation of walking [38]. This effectiveness stems
from studies in perception psychology revealing that visual input often overrides proprioception
(sensing the body’s position, movement, and actions) and vestibular sensations (related to balance
and motion) when they conflict [10]. Essentially, humans excel at estimating their momentary
direction of motion but struggle to perceive their exact paths of travel [18].

In VEs, this means users instinctively adjust for minor inconsistencies during locomotion, par-
ticularly when visual, proprioceptive, and vestibular cues differ. This enables imperceptible redi-
rections using visual cues provided by VEs, a characteristic feature of RDW. RDW employs
curvature gains (rotations of the virtual scene), translational gains (altering linear movements to
change perceived distances traveled), and rotational gains (adding extra rotations to the user’s
existing rotation). Comprehensive discussions on the mathematical formulations of these gains,
their perceptual thresholds, and experimental validations are available in prior studies [38, 37].
Notably, research indicates that VR users adjust their movement speeds in response to significant
translational gains, even when these gains are not consciously perceivable.

(a) 3DoF vs. 6DoF (b) Redirected walking concepts [30]

Figure 2: Main concepts of redirected walking enabled through 6DoF non-tethered wireless HMDs [42]

2.2 Intelligent Reflective Surfaces
IRSs are envisioned to become a key enabling technology for next-generation mobile systems, such
as beyond-5G/6G. An IRS consists of an array of sub-wavelength unit cells that can alter the
electromagnetic (EM) response of the impinging radio-frequency (RF) signals in a nearly passive
way. Indeed, IRSs can dynamically re-focus the received EM waves towards desired directions in
space by suitably configuring the scattering properties of each unit cell. This ability unlocks new
possibilities and opens up a new paradigm of the wireless environment, which has been treated
as an optimization constraint in conventional systems, but can now be considered as a variable to
be optimized, creating the so-called Smart Radio Environment. For example, when an obstacle
hinders the LoS between the transmitter and the receiver, an IRS device strategically deployed
can alleviate this problem via (passive) beamforming so as to effectively create a virtual LoS,
which guarantees favorable signal propagation conditions. This can be achieved, for instance, by
suitably designing the re-configurable phase shift provided by each unit cell to receive wireless
signals such that the reflected signals may interfere constructively towards the desired direction
and destructively elsewhere.

Prior research has underscored the advantages of integrating IRSs into traditional multi-user
wireless communication frameworks [5, 15, 8, 51]. For instance, Chaccour et al. demonstrated that
the IRS can enhance both the sum data-rate and the reliability of data transfer in VR contexts [8].
Jalali et al. delved into the IRS design for energy efficiency and admission control maximization
for Internet of Things (IoT) users with short packet lengths [15]. Besser et al. introduced a
phase hopping algorithm tailored for IRS-supported systems to elevate data transfer reliability
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Figure 3: Example ISAC sensing tasks ordered by implementation complexity

without the necessity for channel state information (CSI) [5]. Furthermore, Zhou et al. studied a
latency minimization problem for a multi-user secure IRS-aided VR delivery network with imperfect
Channel State Information (CSI) [51].

Nonetheless, these studies have not explored the potential synergies of melding IRS with
mmWave communication and sensing in a full-immersive multi-user VR scenario. Moreover, the
incorporation of IRSs in multi-user VR streaming systems, especially with optimal resource allo-
cation, remains uncharted territory. Within IRS-enhanced VR streaming systems, the meticulous
optimization of IRS phase shifts, placement, radiation patterns, and beamforming vectors stands
vital to realizing high data rates. To the best of our knowledge, none of the research works have
optimized the design of an IRS-assisted indoor VR network, where the IRS is considered to be
deployed in a confined 3D space as a function of VR users’ trajectory.

2.3 Real-Time Sensing for Enhanced Experiences
MmWave Joint Communication and Sensing (JCAS) is a new paradigm gaining traction in the
context of Sixth Generation (6G). The idea is for mmWave networks to support sensing in addition
to supporting more traditional communication requirements. Integrated sensing can be performed
with different aims, depending on the application scenario. For example, localization is one typical
example of sensing in mmWave JCAS systems [20], which finds applications in e.g., vehicular
networking scenarios [35]. More advanced applications can be found in the considered VR-specific
scenario. Some examples include estimation of human pose or activities using mmWave signals [6],
while more advanced ones envision full-body 3D representation capturing [40]. This advanced
functionality is then envisioned to be used as a primer for generating interactive VEs with realistic
3D avatars prudently tracking users’ movements. It has been established in [47] that, in high-
frequency communication, there is a direct link between sensing accuracy and SNR. When deploying
an JCAS network, a single waveform transmits data and performs radar detection simultaneously.
The waveform must be capable of accommodating radar detection requirements such as estimation
accuracy. Range, speed and communication requirements such as reliability, throughput, and
latency necessitate a minimum SNR to function correctly, which is critical for reliable and accurate
signal detection and interpretation. Hence, optimizing the sensing accuracy requires maintaining
stable and high SNR across the deployment environment, which is addressed through the utilization
of IRS.

While IRS was designed primarily for communication, the technology may bring significant
benefits regarding performance, power consumption, and cost for localization and mapping, which
is a promising function. As such, IRS-assisted JCAS systems have been extensively researched
in various scenarios. The work [17] investigates the joint design of transmit beamforming at the
AP and reflection coefficients at the IRS to maximize the SNR of radar detection while meeting
the communication need. The authors in [34] propose a two-dimensional hierarchical code book
that simultaneously services the User Equipment (UE) and locates the target using the IRS for
location and communication. In [25], the authors propose a new simultaneous (beam) training
and sensing (STAS) protocol that utilizes downlink IRS beam scanning for concurrent training and
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sensing to achieve efficient IRS-aided mmWave JCAS. And finally, [14] proposes an JCAS system
by introducing an IRS architecture to the communication system where location sensing and data
transmission can be conducted simultaneously, occupying the same spectrum and time resources.

In general, channel parameters such as Time of Arrival (ToA)/Time Difference of Arrival
(TDoA), Angle of Arrival (AoA), and Received Signal Strength (RSS) can be used for enabling the
sensing tasks outlined in Figure 3. Taking user localization as an example, RSS-based localization
has poor location accuracy, which is influenced by network topology and propagation environment
factors such as path loss exponent and shadowing effects. Although ToA/TDoA-based and AoA-
based localization can achieve high location accuracy, they rely heavily on the LoS link, which can
be disrupted, particularly in the mmWave case. As a result of its ability to establish a strong LoS
path between the AP and the UE, the IRS has been proposed to overcome the blockage problem
and improve location accuracy in the wireless communication system [14]. These properties, com-
bined with their close relation to the environment’s geometry and ability to be embedded in soft
materials, as mentioned in [19], enable IRS to function as a “barrier” that defines the boundaries
of the deployment environment and makes them desirable for mapping and localization purposes.
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3 Overcoming Communication and Sensing Challenges
3.1 Considered Scenario
We consider a scenario as depicted in Figure 4. Specifically, we consider an environment in which
the users are immersed in their VEs. The environment is constrained in its physical size as to
provide a safe space for the users to immerse in their experiences. As such, the only potential
collision perils for the users are other users and environmental boundaries. RDW is employed for
directing the users primarily in a way that does not break their immersion, as discussed in Section 2.
The users are immersed in VEs that are potentially unbound and interactive in the way that the
action of one user affects the experience of the other, potentially collocated users. The perception
of unbounded experiences are supported through RDW by introducing imperceivable rotational,
translational, and curvature gains, as discussed previously.

In such a scenario, the goal is to provide the users with the consistently high throughput
throughout their VEs. As such, the communication throughput between the AP and the users’
HMD should be maximized, while simultaneously providing homogeneous coverage or minimizing
the spatial variability of the throughput. This is of interest as it allows for downlink transmission
of the video content toward the users’ HMDs in a way that minimizes the jitter and allows for
continuous delivery of same-quality video frames. The fact that the users’ VEs might be interactive
poses an additional system requirement. Specifically, there is a need for capturing the actions of
the users, as well as delivering the captured content to other users, where both actions should
be carried out within the motion-to-photon latency for immersion maximization and avoiding the
motion sickness.

To support the outlined scenario’s requirements, we envision the utilization of high-frequency
wireless networks operating in mmWave frequencies (i.e., 30-300 GHz). This is because the delivery
of VR content in real time, as well as real time sensing and distribution of users’ actions across
other users, requires significant communication bandwidth not present in traditional sub-6 GHz
frequencies. In addition, large communication bandwidth available at such frequencies represents a
primer for accurate network-supported sensing of users’ actions, e.g., in the form of digital capturing
of users full 3D poses.

Due to all these needs for our scenario, we have used IEEE 802.11ad networks. The IEEE
802.11ad standard operates at mmWave frequencies, which makes directional communication a fea-
ture to allow high speeds over short distances. This is achieved through advanced beamforming
techniques, in which the AP and UEs can focus their transmissions in specific directions, improv-
ing signal strength and reliability. However, this directional nature of communication can create
challenges in achieving uniform coverage within a given area [28]. The quality in the formation
of beams varies with the number of antennas; as the number of antennas increases, the width of
the beam is reduced, making the array more directional, thus improving beamforming. At the
same time, as the number of antennas decreases, the beamforming declines [36]. When the number
of antenna elements in a AP is limited, achieving uniform coverage over the entire area becomes
difficult. This limitation can result in areas of weaker signal strength or coverage gaps, which can
be particularly problematic for applications such as VR.

To counter these challenge, we introduce IRSs to the considered full-immersive multiuser VR
environments. Given that such environments will have to be safe spaces without collision hazards
for the users apart from the environmental boundaries and other users [4], we consider it as a
natural possibility to utilize IRSs in the surrounding walls to support the communication and
sensing challenges stemming from the scenario. IRSs consist of large arrays of passive reflecting
elements on a reconfigurable planar surface. These elements can independently modify the phase
of an incoming signal before reflecting it towards its intended receiver. The integration of IRS can
be a boon for users experiencing significant path loss, as the IRS creates additional propagation
pathways – namely, reflected channels. Moreover, these IRSs offer added degrees of freedom through
the phase shifts of the reflective elements, which can be harnessed to minimize interference [15].
It is also worth noting that IRSs are envisioned to be manufactures as passive, cheap, and flexible
entities adaptable for indoor VR streaming setups, as they could be used as ’soft’ environmental
boundaries [19].

For the full-immersive VR scenario in Figure 4, we study a novel radio resource allocation
optimization in an IRS-assisted mmWave network, where a multi-antenna AP transmits informa-
tion symbols to a set of single-antenna HMDs. In particular, a resource allocation algorithm is
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Figure 4: Considered full-immersive IRS-assisted mmWave scenario.

designed to maximize the system’s sum data-rate subject to peak transmit power feasibility and
QoS constraints. The formulated problem is non-convex due to the high coupling of optimization
variables. To tackle this, we employ AO algorithm, segmenting the main optimization problem into
four distinct sub-problems, in which each sub-problem is optimally solved.

3.2 Location-based IRS Resource Allocation for Communication and Ac-
tive Sensing
As depicted in Fig. 1, we study a wireless communication system in which IRS are used to redirect
data to a set of UEs. The set of all UEs is represented as K = {1, ...,K} and the set of IRS
elements is denoted byM = {1, ...,M} . In many real-world applications, utilizing IRS for wireless
communication proves beneficial. For instance, in applications that can tolerate delays like periodic
sensing data collection, using IRS to sequentially communicate with UEs can be an economical
choice. Our goal is to fine tune the IRSs’ position to achieve maximum SNR over a fixed time
span T > 0. As explained in Section 2, it is critical to maintain a high SNR to provide extensive
and reliable coverage to deliver stronger signals, reduced dead zones and improved comprehensive
data collection to enhance communication and sensing. The time duration T is partitioned into
N uniformly spaced time intervals, given by T = Nξt. Specifically, ξt denotes the length of each
individual time slot, andN is defined as the set of all these time slots, represented byN = {1, ..., N}.

In this context, we are adopting a 3D Cartesian coordinate system with the AP situated at
a fixed location a = [ax, ay, az]T ∈ R3×1. On the other hand, the UEs are placed in a ground
location, and their trajectory follows the path u[n, k] = [ux[n, k], uy[n, k], uz[n, k]]T ∈ R3×1.

The placement of the IRSs’, when projected onto the horizontal plane, is represented by s[n] =
[sx[n], sy[n], sz[n]]T ∈ R3×1. Furthermore, we confine the area of interest to four half-have spaces
H1 to H4 where the IRSs’ could potentially be placed. The half spaces H1 to H4 can be defined as
follows:

H1 : ymin < sy[n] < ymax, zmin < sz[n] < zmax, sx[n] = xmix, (1)
H2 : ymin < sy[n] < ymax, zmin < sz[n] < zmax, sx[n] = xmax, (2)
H3 : xmin < sx[n] < xmax, zmin < sz[n] < zmax, sy[n] = ymin, (3)
H4 : xmin < sx[n] < xmax, zmin < sz[n] < zmax, sy[n] = ymax (4)

These regions make sure that IRSs’ are positioned in one of the corner walls of the room. In
this configuration, the distance between the IRS and the UE, as well as between the IRS and the
AP over time, has a direct influence on the channel quality. Consequently, determining the optimal
positioning of the IRS becomes crucial.
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To clarify our discussion, we operate under the assumption that the communication link between
the IRS and the UEs is largely governed by the LoS channel. In the context of our setup, it is
important to highlight that the IRS-UE channel is more inclined to maintain a prominent LoS
link than AP-UE channels. For this explanation, we also assume that the AP-UE channel is
entirely obstructed by other UE that block the LoS between the AP and the UE. Exploring Non-
Line-of-Sight (NLoS) and multi-path fading channels will be reserved for our subsequent studies.
Additionally, any Doppler effect caused by the UE’s mobility is presumed to be fully compensated
for.

To expedite the utilization of an IRS-aided communication, we also take into account the radi-
ation pattern of the IRS, as explored in [41], namely:

F (ψ,φ) =
{

cos3(ψ), ψ ∈ [0, π/2], φ ∈ [0, 2π],
0, ψ ∈ (π/2, π], φ ∈ [0, 2π],

(5)

where ψ and φ represent the elevation and azimuth angles, respectively, from the IRS to the
AP/UE link. It is worth pointing out that the radiation pattern of the IRS remains consistent
across various azimuth angles. To streamline our discussion, we exclude the argument φ from the
function F (ψ,φ) in (23) in subsequent equations, using F (ψ) in place of F (ψ,φ). Given these
conditions, the dynamic channel between AP and IRS, and between IRS and the k-th UE adheres
to the free-space path loss model, which can be detailed as:

h̃ =h
√
β0F (ψ0), (6)

g̃k =gk

√
βkF (ψk),∀k ∈ K, (7)

where β0 and βk symbolize the path loss, while h ∈ CM×1 and gk ∈ CM×1 stand for the small-
scale fading of the links between AP and IRS and between IRS and the k-th UE, respectively.
Notably, the small-scale fading remains static throughout each coherence interval. In contrast,
the path loss undergoes changes but at a much slower rate. This perspective is justifiable when
considering that the distances between the users, the AP, and the IRS are significantly larger than
the separations between the IRS elements [7, 48]. In light of this, β0 and βk can be delineated as:

βk′ = c0∥dk′∥−αk′ , k′ ∈ K ∪ {0}, (8)

where c0 is the reference path loss at a distance of 1 meter. α0 and αk,∀k ∈ K are the path
loss exponents of links between AP and IRS and the link between IRS and UE k, respectively [26].
Moreover, the distance vectors from the IRS to the AP and k-th UE are respectively given by:

d0 = s[n]− a[sx[n]− ax, sy[n]− ay, sz[n]− az]T ,∀n ∈ N , (9)
dk = s[n]− u[n, k] = [sx[n]− ux[n, k], sy[n]− uy[n, k],
sz[n]− uz[n, k]]T ,
∀n ∈ N ,∀k ∈ K. (10)

Finally, the received signal of k-th UE can be mathematically expressed as:

yk =
√
PAPg̃H

k Θh̃ + nk,∀k ∈ K, (11)

where PAP is the access point transmit power and nk is the additive white Gaussian noise
(AWGN) at k-th UE, which follows a complex normal distribution with mean 0 and variance σ2

k.
The IRS phase shift matrix is represented by Θ and is defined as Θ ≡ diag(θ1, θ2, . . . , θM ). Here,
θm ∈ C characterizes the reflection coefficient of the m-th IRS element. Specifically, θm ≡ ϱme

jϑm ,
where ϱm lies within [0, 1], capturing the reflection amplitude, and ϑm spanning [0, 2π] depicts the
phase shift of the m-th IRS element. Notably, the ‘j’ in the exponent represents the imaginary unit.
Ultimately, by assuming there is no multi-user interference, we represent the SNR at k-th UE as
follows:
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γk(PAP,Ψ,β,Θ) =
PAPβ0F (ψ0)βkF (ψk)

∣∣gH
k Θh

∣∣2

σ2
k

,∀k ∈ K, (12)

where Ψ and β are the collection of ψ’s and β’s according to Ψ ≜ [ψ0, ..., ψK ] and β ≜
[β0, ..., βK ], refer to the IRS location decision variables, s[n]. Given the SNR expression as artic-
ulated above, in equation (12), the Spectral Efficiency (SE) for k-th UE, measured in [bit/s/Hz],
can be expressed as:

R(PAP,Ψ,β,Θ) = log2(1 + γk(PAP,Ψ,β,Θ)),∀k ∈ K, (13)

consequently, the sum data-rate for all UEs can be written as:

Rtot(PAP,Ψ,β,Θ) = B
∑

∀k∈K

R(PAP,Ψ,β,Θ), (14)

where B represents the bandwidth of the network. In the context of our study, it is also of high
importance to enhance the total data-rate. This can be achieved by fine-tuning parameters such
as transmit power control, optimal placement of IRS, and their corresponding phase shifts. With
this objective in mind, the optimization problem can be formulated as:

P1 : max
PAP,Ψ,β,Θ

Rtot(PAP,Ψ,β,Θ), (15a)

s.t. PAP ≤ Pmax
AP , (15b)

|θm| ≤ 1, ∀m ∈M, (15c)
(22). (15d)

Constraint (15b) ensures that the transmission power remains within the upper limits set for
the AP. Constraint (15c) specifies the bounds within which the reflection coefficient for every IRS
element must operate. Constraint (22) ensure IRSs’ are positioned in one of the corner walls of
the room. Given the presence of a non-concave objective function and the non-convex nature of
constraint (15c), the optimization problem laid out in (15) is distinctly nonconvex. This inherent
complexity makes it challenging to derive a straightforward solution for the problem. As a result,
AO methods or approximations might be needed to effectively address non-convexity.

3.2.1 AP Transmit Power Control
We first fix Ψ, β, and Θ, and consider the optimization of PAP. Thus, the corresponding optimiza-
tion problem of AP transmit power control [24] with a transformed objective function can then be
formulated as follows:

P2 :max
PAP

∑
∀k∈K

PAPβ0F (ψ0)βkF (ψk)
∣∣gH

k Θh
∣∣2

σ2
k

, (16a)

s.t. PAP ≤ Pmax
AP . (16b)

One can readily prove that the optimization problem (16) is affine and convex. Thus, we can
exploit the properties of convex optimization to derive solutions. To do so, one approach is to
differentiate the objective function concerning PAP, the AP transmit power. By setting this first-
order derivative to zero and taking into account the constraint that dictates the maximum transmit
power, we can derive the optimal solution for the problem described in (16). This solution can be
represented as PAP = max {0, Pmax

AP } .

3.2.2 IRS Optimal Placement
In this subsection, we formulate the subproblem wherein the IRSs’ placement are optimized with a
fixed IRS phase shift and radiation pattern, i.e., Ψ and Θ are known. Therefore, the optimization

12



problem for the IRSs’ position can be written as follows:

P3 :max
s[n]

∑
∀k∈K

c2
0F (ψ0)F (ψk)

∣∣gH
k Θh

∣∣2

σ2
k∥s[n]− a∥α0∥s[n]− u[n, k]∥αk

, (17a)

s.t. (22), (17b)

where β’s are replaced by the IRSs’ location decision variables, s[n]. It can be seen optimization
problem (17). Thus, an optimal solution that gives can be found. By setting the first-order
derivative of the objective function with respect to s[n] to zero and considering the maximum
SNR, we obtain the following two qualities:

(ax − sx[n])
(ax − sx[n])2 + (ay − sy[n])2 + (az − sz[n])2

= (sx[n]− uy[n, k])
(sx[n]− uy[n, k])2 + (sy[n]− uy[n, k])2 + (sz[n]− uz[n, k])2 (18)

(ay − sy[n])
(ax − sx[n])2 + (ay − sy[n])2 + (az − sz[n])2

= (sy[n]− uy[n, k])
(sx[n]− uy[n, k])2 + (sy[n]− uy[n, k])2 + (sz[n]− uz[n, k])2 (19)

(az − sz[n])
(ax − sx[n])2 + (ay − sy[n])2 + (az − sz[n])2

= (sz[n]− uz[n, k])
(sx[n]− uy[n, k])2 + (sy[n]− uy[n, k])2 + (sz[n]− uz[n, k])2 (20)

where it is assumed αk = 2 [23] in order to achieve closed-from solutions. Given the aforemen-
tioned inequalities, an iterative approach is employed to determine the optimal IRSs’ position.
Starting with predetermined or initial values for sx[n], sy[n], and sz[n], the optimal x-coordinate,
y-coordinate and z-coordinate of the IRS are computed using the equation referenced by (34)−(20)
iteratively and following the constraint (22). This iterative refinement converges to optimize the
IRS’s placement in the 3D plane based on the system’s performance metric and constraints. The
iterative algorithm is given in Algorithm 1.

3.2.3 Passive Beamforming and Radiation Pattern Optimization at the IRS
We now consider the subproblem of jointly optimizing Ψ and Θ with fixed PAP and β, which can
be given by:

P4 :max
Ψ,Θ

Rtot(Ψ,Θ), (21a)

s.t. |θm| ≤ 1, ∀m ∈M. (21b)

Unlike the preceding two subproblems that have closed-form solutions, obtaining a closed-form
solution for Ψ and Θ is challenging due primarily to the constraints associated with the IRS unit
modulus. Fortunately, we could utilize successive convex approximation methods to transform the
rank unit modulo constraint into linear matrix inequalities per iteration based on [15]. The Final
iterative-based AO algorithm is provided in Algorithm 2.

3.3 Location-based IRS Resource Allocation for Advanced Sensing
In many real-world applications, the utilization of IRS for wireless communication proves to be ad-
vantageous. For instance, employing IRS sequentially communicate with UE can be a cost-effective
choice in scenarios where delays cannot be tolerated, such as periodic sensing data collection, as is
the case in high data-rate Virtual Reality (VR) networks. As illustrated in Fig. 4, we investigate a
wireless communication system in which IRSs are employed to redirect data to a set of UEs. The
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Algorithm 1 IRS Optimal Placement algorithm
Input: Initial parameters sx[n], sy[n], sz[n], maximum iterations I (with i as the iteration index) and

precision P
Output: Optimal parameters sx[n]∗, sy[n]∗, sz[n]∗

1: repeat
2: psx[n] = sx[n]
3: psy [n] = sy[n]
4: psz [n] = sz[n]
5: Compute gradient vector for 18 ∇J(sx[n])
6: Compute gradient vector for 19 ∇J(sy[n])
7: Compute gradient vector for 20 ∇J(sz[n])
8: Update parameters: sx[n]← sx[n] + α · ∇J(sx[n])
9: Update parameters: sy[n]← sy[n] + α · ∇J(sy[n])

10: Update parameters: sz[n]← sz[n] + α · ∇J(sz[n])
11: p = ||sx[n]− psx[n]||+ ||sy[n]− psy [n]||+ ||sz[n]− psz [n]||
12: i← i+ 1
13: until p < P and i < I
14: return sx[n]∗ = sx[n], sy[n]∗ = sy[n], sz[n]∗ = sz[n]

Algorithm 2 Iterative AO Algorithm
Input: Set iteration number e = 0, maximum number of iterations Emax, and and initialize the

coordinates PAP = P 0
AP, Ψe = Ψ0

e, βe = β0
i , Θe = Θ0

e.
repeat

2: Solve problem (16) for given {Ψe−1
i ,βe−1

i ,Θe−1
i } and obtain the optimal P e

AP.
Solve problem (17) for given {P e−1

AP ,Ψe−1
i ,Θe−1

i } and obtain the optimal βe
i .

4: Solve problem (21) for given {P e−1
AP ,βe−1

i } and obtain the sub-optimal {Ψe
i ,Θe

i}.
until e = Emax

6: return {P ∗
AP,Ψ∗

i ,β
∗
i ,Θ∗

i }={P e
AP,Ψe

i ,β
e
i ,Θe

i}

collection of all UEs is denoted as K = 1, ...,K, while the set of IRSs is represented as I = 1, ..., I,
with each element of an IRS being denoted by M = 1, ...,M . Our objective is to optimize the po-
sition of the IRSs to maximize the Signal-to-Noise Ratio (SNR) over a fixed time duration T > 0.
Sustaining a high SNR is of paramount importance to ensure extensive and dependable coverage,
leading to stronger signals, minimized dead zones, and enhanced comprehensive data collection,
ultimately improving communication and sensing capabilities. The time duration T is divided into
N evenly spaced time intervals, defined as T = Nξt. More precisely, ξt signifies the duration of
each individual time slot, and N represents the set of all these time slots, denoted as N = 1, ..., N .

In this context, we utilize a 3D Cartesian coordinate system to track the positions of the AP,
UEs, and IRSs. The AP is fixed at coordinates a = [ax, ay, az]T ∈ R3×1. On the other hand,
the UEs are randomly scattered in a vertical plane, and their predefined trajectory follows the
path u[n, k] = [ux[n, k], uy[n, k], uz[n, k]]T ∈ R3×1. The placement of the IRSs’ is pivotal for
signal redirection. When projected onto the vertical plane (e.g., on each wall of a room or office
enforcement), the central location of i-th IRS is represented by si[n] = [si

x[n], si
y[n], si

z[n]]T ∈ R3×1.
Furthermore, we confine the area of interest to I half-have spaces D∞ = {D1, . . . ,DI} where

each IRSs’ could potentially be placed5. Within the first half-space, the first IRS can be strategically
positioned, and as such, we define D1 as:

5We strategically place each IRS central position in any of these half-space regions to optimize signal quality, minimize
interference, and enhance overall wireless communication system efficiency. This is done so long as no two IRS are placed
in one half-space; that is, each IRS must be positioned in a different half-space.

14



xi
min <s

i
x[n] < xi

max,

yi
min <s

i
y[n] < yi

max,

zi
min <s

i
z[n] < zi

max, ∀n ∈ N ,∀i ∈ I, (22)

The domain in (22) defines the first region, i.e., D1, where the first IRS needs to be centrally
positioned. Likewise, we can establish D∞/D1 = {D2, . . . ,DI} to represent the regions within
which the remaining IRSs are positioned. These regions make sure that IRSs’ are positioned in one
of the corner walls of the room as depicted in Fig. 4.

In this configuration, the distance between the IRS and the UE, as well as between the IRS
and the AP, evolves over time and significantly impacts the quality of the communication channel.
Therefore, determining the optimal placement of the IRS is of utmost importance. To provide
clarity to our discussion, we make the assumption that the communication link between the IRS
and the UE is predominantly governed by the LoS channel. It is noteworthy that, within our setup,
the IRS-UE channel is more likely to maintain a strong LoS link compared to the AP-UE channels.
We make this assumption while considering that the AP-UE channel is entirely obstructed by other
UEs, which block the LoS between the AP and the UE. We reserve the exploration of NLoS and
multi-path fading channels for our future studies. Additionally, we presume that any Doppler effect
induced by UE mobility is fully compensated for in our analysis. To expedite the utilization of an
IRS-aided communication, we also take into account the radiation pattern of the IRS, as explored
in [41], namely:

F (ψi,k, φi) =
{

cos3(ψi,k), ψi,k ∈ [0, π/2], φi ∈ [0, 2π],
0, ψi,k ∈ (π/2, π], φi ∈ [0, 2π],

(23)

where ψi,k and φi represent the elevation and azimuth angles, respectively, from each IRS to
the AP/UE link. It is important to note that the radiation pattern of the IRS remains consistent
across various azimuth angles. To simplify our discussion, we omit the argument φi from the
function F (ψi,k, φi) in (23) in subsequent equations, using F (ψi,k) in place of F (ψi,k, φi). Under
these conditions, the dynamic channel between the AP and the IRS, as well as between the IRS
and the k-th UE, follows the free-space path loss model, which can be described as:

h̃i =hi

√
βi,0F (ψi,0), (24)

g̃i,k =gi,k

√
βi,kF (ψi,k),∀k ∈ K, (25)

where βi,0 and βi,k serve to quantify path loss, representing the reduction in signal strength as it
traverses the wireless medium. In contrast, the vectors hi ∈ CM×1 and gi,k ∈ CM×1 describe small-
scale fading, accounting for the rapid signal fluctuations attributed to phenomena like multipath
propagation and signal scattering. Notably, these small-scale fading characteristics exhibit relative
stability throughout each coherence interval, allowing us to treat them as quasi-static. Meanwhile,
path loss, influenced by distance and environmental obstructions, undergoes variations, albeit at
a much slower pace. This perspective is rooted in the substantial difference in scales between
the distances separating users, the AP, and the IRS and the distances between individual IRS
elements, where variations occur much more swiftly and are, therefore, considered negligible in
comparison, aligning with existing wireless communication literature [7, 2]. In light of this, the
path loss components can be represented as:

βi,k′ = c0∥di,k′ [n]∥−αi,k′ ,∀k′ ∈ K ∪ {0},∀i ∈ I,∀n ∈ N , (26)

where c0 is the reference path loss at a distance of 1 meter.
αi,0 and αi,k,∀k ∈ K are the path loss exponents of links between AP and IRS and the link

between IRS and UE k, respectively [13]. Moreover, the distance vectors from the IRS to the AP
and k-th UE are respectively given by:
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di,0[n] =si[n]− a[si
x[n]− ax, s

i
y[n]− ay, s

i
z[n]− az]T ,

∀i ∈ I, ∀n ∈ N , (27)
di,k[n] =si[n]− u[n, k] = [si

x[n]− ux[n, k], si
y[n]− uy[n, k],

si
z[n]− uz[n, k]]T ,
∀k ∈ K, ∀i ∈ I, ∀n ∈ N . (28)

To sum it up, the mathematical representation for the received signal at the k-th UE is as
follows:

yk =
∑
i∈I

√
PAPg̃H

i,kΘih̃i + nk,∀k ∈ K. (29)

where PAP is the transmit power of the AP, and nk corresponds to the additive white Gaussian
noise (AWGN) observed at the k-th UE. The noise follows a complex normal distribution charac-
terized by a mean of zero and a variance of σ2

k. The i-th IRS phase shift matrix is represented by
Θi and is defined as Θi ≡ diag (θ1,m, θ2,m, . . . , θi,M ). Here, θi,m ∈ C characterizes the reflection
coefficient associated with the m-th element of the i-th IRS. Specifically, θi,m ≡ ϱi,me

jϑi,m , where
ϱi,m lies within [0, 1], capturing the reflection amplitude, and ϑi,m spanning [0, 2π] depicts the
phase shift of the m-th element of the i-th IRS. It is worth noting that the exponent ‘j’ in the
equation represents the imaginary unit. In the absence of multi-user interference, we can express
the SNR at the k-th UE as follows:

γi,k(PAP,Ψi,βi,Θi) =
PAPβi,0F (ψi,0)βi,kF (ψi,k)

∣∣∣gH
i,kΘihi

∣∣∣2

σ2
k

,

∀k ∈ K,∀i ∈ I, (30)
where Ψi and βi encompass the sets of ψi,k’s and βi,k’s, organized respectively as follows:

Ψi ≜ [ψi,0, ..., ψi,K ] and βi ≜ [βi, 0, ..., βi,K ]. These variables are instrumental in representing each
IRS location decision variable in terms of βi. Given the SNR expression as articulated above, the
optimization problem can be formulated as:

P5 : max
PAP,Ψi,βi,Θi

γi,k(PAP,Ψi,βi,Θi), (31a)

s.t. PAP ≤ Pmax
AP , (31b)

|θi,m| ≤ 1, ∀m ∈M,∀ i ∈ I, (31c)
si[n] ∈ Di,∀ i ∈ I, ∀n ∈ N . (31d)

Constraint (31b) guarantees that the transmission power of the AP remains within the specified
upper limits. Constraint (31c) defines the operational boundaries for the reflection coefficients of
each IRS element. Constraint (31d) enforces the placement of IRSs on one of the corner walls of the
room. Due to the presence of a non-concave objective function and the non-convex nature of con-
straint (31c), the optimization problem outlined in (31) is inherently nonconvex. This complexity
poses a challenge in finding an optimal solution to the problem. Consequently, addressing non-
convexity may require the use of optimization techniques or approximations, such as Alternating
Optimization (AO) methods, to effectively tackle the problem.

3.3.1 AP Transmit Power Control
To start, we hold Ψi, βi, and Θi fixed and concentrate on optimizing PAP. Consequently, we
formulate the optimization problem for AP transmit power control [24, 43] as follows:

P6 :max
PAP

∑
∀k∈K

PAPβ0F (ψi,0)βkF (ψi,k)
∣∣∣gH

i,kΘihi

∣∣∣2

σ2
k

, (32a)

s.t. (31b).
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Algorithm 3 Iterative AO Algorithm
Input: Set iteration number e = 0, maximum number of iterations Emax, and and initialize the

coordinates PAP = P 0
AP, Ψe = Ψ0

e, βe = β0
i , Θe = Θ0

e.
repeat

2: Solve problem (32) for given {Ψe−1
i ,βe−1

i ,Θe−1
i } and obtain the optimal P e

AP.
Solve problem (33) for given {P e−1

AP ,Ψe−1
i ,Θe−1

i } and obtain the optimal βe
i .

4: Solve problem (35) for given {P e−1
AP ,βe−1

i } and obtain the sub-optimal {Ψe
i ,Θe

i}.
until e = Emax

6: return {P ∗
AP,Ψ∗

i ,β
∗
i ,Θ∗

i }={P e
AP,Ψe

i ,β
e
i ,Θe

i}

It can be easily demonstrated that the optimization problem (16) is both affine and convex.
This enables us to leverage the principles of convex optimization to find solutions. One approach
involves differentiating the objective function with respect to PAP, the transmit power of the AP. By
equating this first-order derivative to zero while considering the constraint that limits the maximum
transmit power, we can deduce the optimal solution as PAP = max {0, Pmax

AP } .

3.3.2 IRS Optimal Placement
In this subsection, we outline the subproblem in which the placement of the IRSs is optimized, with
the IRS phase shift and radiation pattern held fixed, i.e., when Ψi and Θi are known, and the op-
timal AP transmit power obtained from the previous sub-problem. Consequently, the optimization
problem for determining each IRS central position can be formulated as follows:

P7 :max
si[n]

∑
∀k∈K

c2
0F (ψi,0)F (ψi,k)

∣∣∣gH
i,kΘihi

∣∣∣2

σ2
k∥si[n]− a∥α0∥si[n]− u[n, k]∥αk

, (33a)

s.t. (31d).

In this formulation, the βi’s are replaced by the IRSs’ location decision variables, si[n]. Notably,
it is evident that the optimization problem (17) is convex in nature, facilitating the determination
of an optimal solution. By equating the first-order derivative of the objective function with respect
to si[n] to zero while taking into account the maximum SNR, we derive the following quality:

(
a△ − si

△[n]
)

(ax − si
x[n])2 +

(
ay − si

y[n]
)2 + (az − si

z[n])2 = (
si

△[n]− u△[n, k]
)

(si
x[n]− uy[n, k])2 +

(
si

y[n]− uy[n, k]
)2 + (si

z[n]− uz[n, k])2 ,

∀△ ∈ x, y, z, ∀k ∈ K, ∀i ∈ I, ∀n ∈ N ,
(34)

We can observe (34) gives each IRS’s central position in the 3D coordinates where it is assumed
αk = 2 to achieve these closed-from solutions [23].

Now, an iterative approach can be employed to determine the optimal IRSs’ position. Beginning
with predefined or initial values for si

x[n], si
y[n], and si

z[n], the optimal x-coordinate, y-coordinate
and z-coordinate of the IRS are computed iteratively using (34) while adhering to constraint 31d.
This iterative refinement process converges to optimize the IRS’s placement within the 3D plane,
driven by the system’s performance metric and constraints.

3.3.3 Passive Beamforming and Radiation Pattern Optimization at the IRS
We now consider the subproblem of jointly optimizing Ψi and Θi with fixed PAP and βi, which
can be given by:
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P8 : max
Ψi,Θi

γi,k(Ψi,Θi), (35a)

s.t. (31c). (35b)

Unlike the previous two subproblems, which have closed-form solutions, finding closed-form
solutions for Ψi and Θi is a challenging task, primarily because of the constraints related to the
unit modulus of the IRS elements. Fortunately, we can employ successive convex approximation
methods to convert the rank unit modulus constraint into linear matrix inequalities in each iteration,
as described in [15] to find a sub-optimal solution. The Final iterative-based AO algorithm is
provided in Algorithm 3.

3.4 Computational Complexity and Convergence Analysis
In this section, we conduct a comprehensive analysis of the computational complexity associated
with our proposed algorithm, as referenced in [16]. This exploration is crucial for understanding
the practical applicability and efficiency of the design resource allocation algorithm.

Initially, we examine the optimization problem P6 (32). This problem is distinguished by its
convex nature, enabling efficient resolution within a polynomial time complexity order. Charac-
terized by a singular optimization variable coupled with one convex constraint, the computational
complexity for each iteration maintains a constant order, denoted as:

O1 = O(1). (36)

Moving forward to optimization problem P7 (33), we encounter a scenario of increased complex-
ity. This convex problem is defined by 3IN decision variables and an equal number of constraints,
reflecting a significant expansion in computational demands compared to P6 (32). Consequently,
the complexity for this segment is approximated as:

O2 ≈ O((IN)4), (37)

indicating a quartic relationship with the product of the number of IRSs I and the number of
UEs N . This polynomial increase emphasizes the computational intensity required as the problem
dimensions expand.

Further complexity unfolds with the reformulation of equation P8 (35) into an SDP. The com-
putational intricacy of an SDP, featuring w SDP constraints and engaging a positive semi-definite
matrix of dimensions v × v is give by:

O3 = O
(√
v log(1/ζ)(wv3 + w2v2 + w3)

)
. (38)

Here, ζ > 0 epitomizes the precision of the solution, as expounded in [15]. This expression high-
lights the subtle trade-off between matrix size, constraint volume, and desired accuracy in shaping
computational workload.

The overall complexity of the proposed algorithmic solution is thus a function of the complexities
of solving optimizing problems (16), (17), and (21). This yields an aggregate complexity of:

Otot = O(eiter(O1 +O2 +O3)), (39)

offering a comprehensive overview of the computational demands of the algorithm across both
stages of optimization. The overall complexity in Otot is an order four polynomial, where eiter
signifies the iteration count necessary for the AO iterative algorithm to achieve convergence.

In the following, we also prove that our algorithm is convergent.

Proposition 1 The objective function value of P5 would be improved via this iterative algorithm.

Proof 1 Let us consider {P (j)
AP,Ψ

(j)
i ,β

(j+1)
i ,Θ(j+1)

i } as the feasible solution set to P8. Then, the
feasible solution set of P8 is a feasible solution to P5 as well. Therefore, {P (j)

AP,Ψ
(j)
i ,β

(j)
i ,Θ(j)

i } and
{P (j+1)

AP ,Ψ(j+1)
i ,β

(j)
i ,Θ(j)

i } are feasible to P5 in the (j)-th and (j + 1)- th iterations, respectively.
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Now, we define fP5(P (j)
AP,Ψ

(j)
i ,β

(j)
i ,Θ(j)

i ), fP8(β(j)
i ,Θ(j)

i ), fP7(Ψ(j)
i ), and fP6(P (j)

AP) as the objective
functions of problem P5, P8 and P6 in the (j)-th iteration, respectively. Thus, we have

fP5(P (j+1)
AP ,Ψ(j+1)

i ,β
(j+1)
i ,Θ(j+1)

i )
(a)= fP8(β(j+1)

i ,Θ(j+1)
i )

(b)
≥ fP8(β(j)

i ,Θ(j)
i )

= fP5(P (j)
AP,Ψ

(j)
i ,β

(j)
i ,Θ(j)

i ), (40)

where (a) follows the fact that problem P5 is equivalent to problem P8 for optimal PAP and Ψi,
and (b) holds since fP8(β(j+1)

i ,Θ(j+1)
i )≥fP8(β(j)

i ,Θ(j)
i ) according to sub-problem 3 (that is, opti-

mizing passive beamforming and radiation pattern optimization at the IRS). Similarly, for a given
P

(j)
AP,β

(j)
i ,Θ(j)

i , we have

fP5(P (j+1)
AP ,Ψ(j+1)

i ,β
(j+1)
i ,Θ(j+1)

i )
(a)= fP7(Ψ(j+1)

i )
(b)
≥ fP7(Ψ(j)

i )

= fP5(P (j)
AP,Ψ

(j)
i ,β

(j)
i ,Θ(j)

i ). (41)

where (a) follows the fact that problem P5 is equivalent to problem P7 for optimal PAP,βi, and Θi,
and (b) holds since fP7(Ψ(j+1)

i )≥fP7(Ψ(j)
i ) according to sub-problem 2 (that is, the IRS optimal

placement). Equivalently, for a given Ψ(j)
i ,β

(j)
i ,Θ(j)

i , we have

fP5(P (j+1)
AP ,Ψ(j+1)

i ,β
(j+1)
i ,Θ(j+1)

i )
(a)= fP6(P (j+1)

AP )
(b)
≥ fP6(P (j)

AP)

= fP5(P (j)
AP,Ψ

(j)
i ,β

(j)
i ,Θ(j)

i ). (42)

where (a) follows the fact that problem P5 is equivalent to problem P6 for optimal Ψi,βi, and Θi,
and (b) holds since fP6(P (j+1)

AP )≥fP6(P (j)
AP) according to sub-problem 1 (that is, the AP transmit

power control). From the above three inequalities, we can conclude the following inequality holds

fP5(P (j+1)
AP ,Ψ(j+1)

i ,β
(j+1)
i ,Θ(j+1)

i )≥fP5(P (j)
AP,Ψ

(j)
i ,β

(j)
i ,Θ(j)

i ). (43)

Thus, we have shown that the objective function of P5 is monotonically non-decreasing after each
iteration. ■
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Table 1: Baseline simulation parameters for communication and active sensing tasks

Parameter Name Parameter Value
Application Type OnOffApplication
Data Rate 150 Mbps
Flow Direction Downlink
Payload Size 1448 Bytes
Transport Protocol UDP
MAC Queue Size 4000 Packets
Aggregation Type A-MSDU and A-MPDU
MAC / PHY CSMA/CA / SC DMG MCS-10
Transmit Power / Sectors 10 mW / 8
Rx Noise Figure 10 dB
Operating Frequency 60.48 GHz

4 Context-Aware IRS Utilization Performance
4.1 Evaluation Setup
We utilize a simulation framework for assessing the performance of the AO algorithm in an IRS-
assisted full-immersive VR-supporting mmWave network, accounting for the locations of the HMDs,
the AP, and the IRS within a 3D setting. The allocation of IRS resources is considered within the
environment’s outer walls, excluding floor and ceiling. The AP is centered on the ceiling at 3 m
height with the HMDs navigating in environments sized 10×10, 15×15, or 20×20 m2, reflecting
future deployment site configurations [42].

The proposed AO algorithm is derived for a generic number of IRS elements, where the allocation
of the number of such resources will depend on the communication data-rate requirements of the
future VR systems. In the instantiation of our approach, we consider 200 such elements, each
of them sized λ/5 [32, 33]. We utilize the discrete-event network simulator (ns-3) simulator, in
particular its WiGig module, which facilitates the analysis of the IEEE 802.11ad/ay protocols’
performance [3]. Moreover, we incorporated a mmWave propagation model into the existing ns-
3 framework that models the presence of IRSs on the signal propagation the environment. The
summary of relevant simulation parameters is given in Table 2.

We designed two experiences in unbound VEs as shown in Figure 5. In multiuser VR setups,
three different types of user coexistence can be distinguished: i) the users sharing solely the tracking
space, ii) the users sharing only the VE, iii) the users sharing both the tracking space and VEs.
In this study, both of the designed experiences abide to the first category. In the “straight path”
experience, the users are assumed to follow a straight path during the full duration of the VE. This
was considered as the worst case scenario given that the RDW algorithm was intuitively expected
to have the most difficulties to unnoticeably redirect the users. In the “random path” experience,
the users are assumed to immerse in an unbound VE and follow a randomly curved path. Hence,
the curvature introduced by the RDW algorithm was expected to be less noticeable. Conceptually,
the experiments consisted of the users walking in the unbound VEs while being confined to the
restricted tracking space. The positional data of the users was utilized by the RDW algorithm to
steer them inside the confined physical environment for collision avoidance. The physical walking
trajectories for the two considered scenarios were generated utilizing the simulator from [21].

This study involves an extensive simulation where a user undertakes a virtual trajectory span-
ning approximately 6 minutes within an enclosed environment. As outlined above, the scenarios
encompass the users traversing a linear, predetermined virtual pathway or navigating a randomly
generated virtual trajectory. The simulation is orchestrated across varying UE density scenarios,
specifically incorporating configurations involving one, two, or three UEs who concurrently walk
throw the designated virtual environment.

The “Optimal" approach follows Algorithm 3 for dynamically adjusting IRS configuration and
resources allocation based on the HMD, AP, and IRS locations, and IRS radiation patterns. We
further consider the IRS element allocation at a “Random" location, as well as at an “Oracle"
location that identifies the IRS element allocation all potential locations across room walls with
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Figure 5: Physical and virtual path of two users when they follow a random or straight course in a VE

0.1 m-sized grid, and does that for every HMD location. Besides, the “Best path" is used to assess
the performance of the combination of the direct AP-HMD and AP-IRS-HMD links, with IRS
elements allocated utilizing the “Optimal" approach.

The modelling of passive sensing tasks is based on finding the UE’s 3D imaging reconstruction
and location by combining mmWave Frequency Modulated Continuous Wave (FMCW) signals
with IRS positioning. FMCW signals exhibit a linear frequency change over time and can be
mathematically described as:

m(t) = cos
(

2π
(
fct+ 1

2Kt
2
))

, 0 ≤ t ≤ T, (44)

where fc denotes the carrier frequency and K = B
T represents the frequency slope. By leveraging

the linear increase in frequency and the concept that time delay results in frequency shift, the Time
of Flight (τ) can be estimated to then compute the distance to the target as τ = dt(x,y,z)+dri(x,y,z)

c .
Taking into account the target reflectivity and round-trip decay, the received signal at the ith

Receiver can be expressed as:

Sbi(x, y, z, t) = αie
j2π

Kdi(x,y,z)
c t, (45)

αi = σ0ie
j2πfcτi (46)

where αi represents the attenuated amplitude from the ith receiver in relation to the specified
target, taking into account the distance and target reflectivity which in the evaluation setup is 0.
It also contains the phase shift of the central frequency term.

As the objective is to reconstruct the user’s 3D image, a single target or point reflector is
insufficient. Therefore, the formulation needs to be expanded to account for multiple targets. The
total received signal at the ith receiver can be expressed as:

Sti(t) =
L∑

l=1
αile

j2πKτlit (47)

where L represents the number of targets, that will depend on the the reflectivity of the points
and their occlusion.
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Table 2: Baseline simulation parameters for advanced sensing tasks

Parameter Name Parameter Value
Transmit Power 10 mW
Rx Noise Figure 10 dB
Operating Frequency 77 GHz
Bandwidth 1.2 GHz
FMCW Sweep Time 0.8 ms
Sampling Rate 500 kHz
Number of IRS Elements 4000

Figure 6: Model for advanced passive sensing of users’ volumetric representations

To perform an exhaustive analysis and compare the homogeneity of the signal’s SNR in different
UE locations, we take into account an UE has 4 sides and can be modeled as a box (cf., Figure ??)
and the simulation setup is equipped with 4 different algorithms. Firstly we have the "NoIRS"
environment in which we only consider the signal from the AP. Secondly, a "Random" one, that
places the center of the IRS at a random position along its corresponding wall. Additionally,
we employ the"Exhaustive Search" algorithm, which seeks the optimal coordinates for the IRS.
This exhaustive search involves examining all the walls of the room for each UE position, with
the consideration of 1000 IRS placements for each wall. Thus, when dealing with 3 UEs, this
algorithm will output the optimal locations for 12 IRS units, as each UE has one associated with
each wall. Finally, the module has an "Optimal" algorithm explained in IRS Optimal Placement,
which efficiently finds a sub-optimal solution significantly faster than the Exhaustive method.

4.2 Evaluation Results
4.2.1 Communication and Active Sensing Coverage, and Active Sensing Ac-
curacy
We evaluated the coverage of different approaches and expressed it through average throughput
and its standard deviation against a maximum threshold of 150 Mbps, focusing on scenarios with a
single and multiple HMD navigating through different environments (cf., Table 4). A snapshot of
the results, focusing on the 15×15 m2 environment, is depicted in Figure 7. The throughput in each
environment peaks when the IRS is optimally positioned for each HMD, in comparison to scenarios
without an IRS and with its resource allocation at a random location. IRS resource allocation an
oracle location occasionally yields higher throughput, yet the AO algorithm can closely match its
performance for the majority of HMD locations, despite its real-time-operating nature. Notably, the
average throughput considering both optimal IRS path and the direct HMD-AP channel is highly
comparable to the oracle. Analyzing standard deviation, performance of the network without an
IRS shows higher throughput variability across environments compared to the scenarios with IRS
support, even for its random resource allocation in the environment. Moreover, the “Optimal"
location-based IRS resource allocation yielded by the AO approach, as well as its combination
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(a) No IRS (b) IRS at a random lo-
cation

(c) IRS at an optimal
location

(d) IRS at an oracle lo-
cation

(e) LoS + IRS at opti-
mal

Figure 7: Communication coverage achieved by different approaches

(a) 2 users, no IRS (b) 2 users, IRS at an optimal location

(c) 3 users, no IRS (d) 3 users, IRS at an optimal location

Figure 8: SNR variability enhancements due to the utilization of an IRS resources at location yielded by the
proposed AO approach

with LoS communication, offer consistent throughput and low SNR variability, even in multiuser
scenarios (cf., Figure 8).

4.2.2 Advanced Sensing Accuracy
This exploration entails a comprehensive analysis that encapsulates a spectrum of connectivity
scenarios with diverse room dimensions. We have measured the average SNR and the Standard
Deviation (SD) of this SNR to observe how performance in homogeneity increases in each scenario.
These scenarios are conducted with the values of Table I, with 1, 2 and 3 users.

Table 4 presents the outcomes corresponding to the four specified scenarios in the evaluation
setup, considering three different room sizes. The data for 1, 2, and 3 users are documented for
each scenario. Each column, arranged from left to right, provides information on the Scenario,
the number of users, the average Signal-to-Noise Ratio (SNR) for 1 user, the average SNR for all
users, the average standard deviation of SNR, and the standard deviation of the averaged SNRs.
It is noteworthy that the average SNR is computed by determining the SNR’s Standard Deviation
for the four sides of the User Equipment’s (UE) box and subsequently averaging it. On the other
hand, the ’SD SNR’ column directly calculates the standard deviation of the four average SNRs,
each pertaining to a side of the UE’s box.

The optimal placement of the IRS significantly influences both the average standard deviation
(SD) and the standard deviation of the averaged Signal-to-Noise Ratio (SNR) for each User Equip-
ment (UE). In comparison to the ’NoIRS’ and ’Random’ scenarios, the exhaustive and optimal
cases demonstrate substantially lower values for these metrics. For instance, in a 10x10 room,
the Average SD ranges from 0.294 to 0.371 in the ’NoIRS’ and ’Random’ scenarios, while in the

23



Table 3: Summary of achieved results

Approach Room size [m] Avg [Mbps] SD [Mbps]
10×10 124, 08 68, 4051

No IRS 15×15 112, 25 74, 7407
20×20 98, 063 79, 2939
10×10 131, 97 60, 4667

Random 15×15 117, 58 62, 8617
20×20 109, 40 67, 1633
10×10 144, 97 50, 5537

Optimal 15×15 125, 10 68, 5524
20×20 115, 87 72, 2035
10×10 147, 89 40, 4191

Oracle 15×15 129, 34 47, 5146
20×20 118, 74 49, 0862
10×10 148, 90 39, 1131

LoS + IRS optimal 15×15 131, 34 46, 5221
20×20 120, 73 48, 9770

’Exhaustive’ scenario, it hovers around 0.2, and in the ’Optimal’ scenario, it is approximately 0.25.
A more pronounced contrast emerges when examining the SD of the Averaged SNR (SD SNR).
In the ’NoIRS’ and ’Random’ scenarios, this value is approximately 0.7 and 0.25 (respectively),
whereas in the ’Exhaustive’ scenario, it ranges from 0.018 to 0.117, and in the ’Optimal’ scenario,
it’s around 0.11. These results can be seen clearly in TABLE II, showing the SNR for each side of
the wall in the 10x10 room with 1 user. It is important to remark that the positioning of the IRS
for Wallx only takes into account the side of the user’s box completely parallel to it.

Table 4: UE’s SNR coverage for each wall in 10x10

IRS Wall 1 Wall 2 Wall 3 Wall 4 SD
No IRS 59,198 57,843 58,206 58,622 0,697
Random 58,206 58,442 57,957 58,79 0,2671

Exhaustive 56,501 56,487 56,527 56,684 0,091
Optimal 54,511 54,224 54,466 54,471 0,113

The optimization of homogeneity requires a loss in SNR. This decrease in SNR during exhaustive
search and optimal placement is not uncommon and can be attributed to the granularity of the
step used in IRS positioning. Occasionally, this granularity may lead to the selection of sub-
optimal configurations. Additionally, to achieve homogeneity, the IRS positioning must adapt to
the side with the smallest coverage, potentially sacrificing a potential SNR increase. Despite this,
the decrease in SNR is needed in order to minimise the SD. The higher standard deviations in
some scenarios imply increased fluctuations, potentially indicative of less reliable or consistent
signal. Conversely, lower standard deviations signify more stability and consistency in the provided
measurements across different room sizes.

Figure 4 illustrates the boxplots of SNR values within the confines of a 20x20 room. The initial
five boxplots correspond to the ’NoIRS’ scenario, with the first one representing the averaged SNR
for the four walls. Subsequently, the following four boxplots depict the SNR for each wall of the
UE. The subsequent five boxplots are associated with the ’Random’ scenario, followed by those for
the ’Exhaustive’ scenario, and finally, for the ’Optimal’ environment.

Observing the plots, it is evident that the variability in data for the first two scenarios is signifi-
cantly larger, indicating less homogeneity and compactness. As previously noted, the SNR is higher
in these scenarios. In contrast, the ’Optimal’ and ’Exhaustive’ scenarios showcase lower variability,
with data appearing more compact. Although the SNR is slightly lower in these cases compared
to the former, the trade-off becomes apparent in the low variability of data. The ’Exhaustive’
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Figure 9: SNR distributions of different approaches in an 20x20 m2 environment

solution yields superior SNR and variability compared to the ’Optimal’ one, albeit at the expense
of a significantly longer runtime—approximately 15 times slower in practice (without employing
data parallelization).
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5 Conclusions, Future Directions, and Implications
• Summarizing key findings and insights from the chapter.
• Significance of the approach in overcoming technical limitations and maximizing the VR

potential.
• Discussing potential future advancements in the field of VR communication and sensing.
• Exploring the broader implications of the proposed framework for the evolution of VR tech-

nologies.

In this article, we have presented a new AO algorithm that calculates the optimal placement of
the centre position of an IRS depending on the UE and AP location inside and close environment.
This AO algorithm is used as a new approach to improve VR performance by implementing the
IRS on the room walls. This new approach is tested using the ns-3 network simulator, where we
have included a module that incorporates the IRS at the end-to-end communication end. This
new module has also combined the AO algorithm to optimise the IRSs’ placement. The simulation
results illustrated the advantages of implementing the IRS in future fully-immersed virtual reality
environments and the efficacy of our proposed algorithm. These results show the improvement of
the SNR and the extension of signal coverage achieved when implementing the IRS, in its optimal
position, and the amount of items used by the IRS is adequate.
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